Global existence versus blow up for some models of interacting particles

نویسندگان

  • Piotr Biler
  • Lorenzo Brandolese
چکیده

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst–Planck and the Debye–Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method by S. Montgomery-Smith.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence versus blow up for some models of interacting particles Piotr

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst–Planck and the Debye–Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and o...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition

The purpose of this work is to deal with the blow-up behavior of the nonnegative solution to a degenerate and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and non-existence of the global solution are given. Further, under some suitable hypotheses, we discuss the blow-up set and the uniform blow-up profile of the blow-up solution. c ©2016 All righ...

متن کامل

Global and blow-up solutions for quasilinear parabolic equations with a gradient term and nonlinear boundary flux

This work is concerned with positive classical solutions for a quasilinear parabolic equation with a gradient term and nonlinear boundary flux. We find sufficient conditions for the existence of global and blow-up solutions. Moreover, an upper bound for the ‘blow-up time’, an upper estimate of the ‘blow-up rate’ and an upper estimate of the global solution are given. Finally, some application e...

متن کامل

Global and blow-up solutions for nonlinear parabolic problems with a gradient term under Robin boundary conditions

where D⊂RN (N≥ 2) is a bounded domain with smooth boundary ∂D. By constructing auxiliary functions and using maximum principles, the sufficient conditions for the existence of a global solution, an upper estimate of the global solution, the sufficient conditions for the existence of a blow-up solution, an upper bound for ‘blow-up time’, and an upper estimate of ‘blow-up rate’ are specified unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017